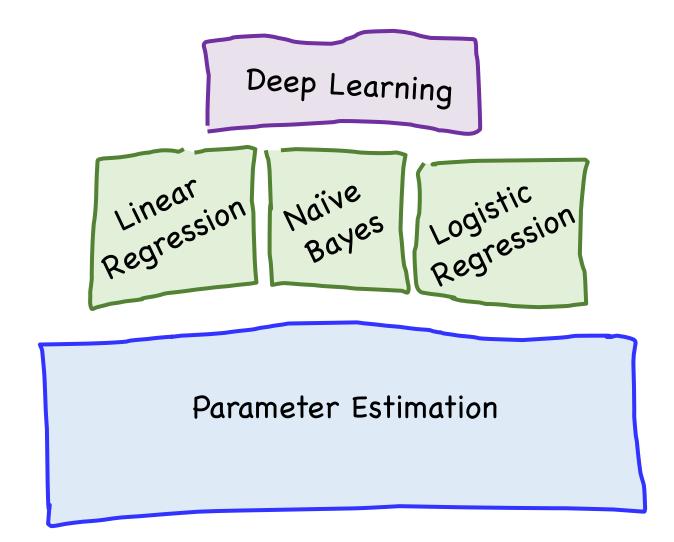
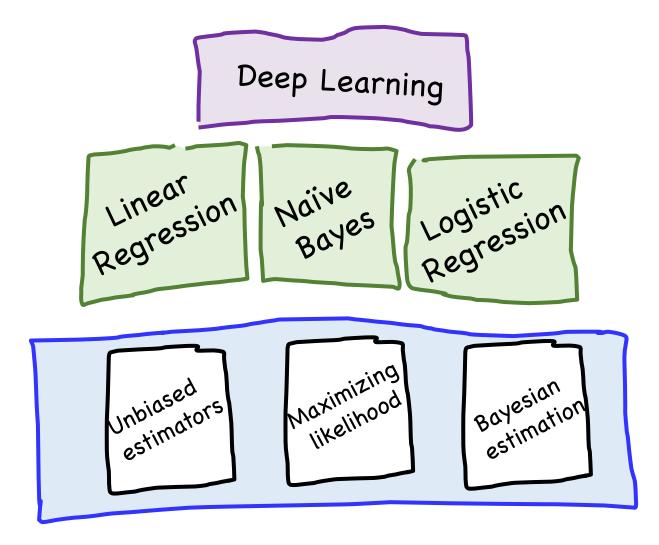


Gradient Ascent Chris Piech CS109, Stanford University

Our Path



Our Path



Review

Parameter Learning

- Consider n I.I.D. random variables X₁, X₂, ..., X_n
 - X_i is a sample from density function $f(X_i | \theta)$
 - What are the best choice of parameters θ ?

Likelihood (of data given parameters):

 $L(\theta) = \prod_{i=1}^{n} f(X_i \mid \theta)$

Piech, CS106A, Stanford University

Maximum Likelihood Estimation $L(\theta) = \prod f(X_i \mid \theta)$ i=1n $LL(\theta) = \sum \log f(X_i|\theta)$ i=1 $\hat{\theta} = \operatorname{argmax} LL(\theta)$ θ

AND ADDRESS OF A DOREST OF A D

Piech, CS106A, Stanford University

Argmax?

Option #1: Straight optimization

Computing the MLE

- General approach for finding MLE of $\boldsymbol{\theta}$
 - Determine formula for $LL(\theta)$
 - Differentiate $LL(\theta)$ w.r.t. (each) $\theta : \frac{\partial LL(\theta)}{\partial \theta}$
 - To maximize, set $\frac{\partial LL(\theta)}{\partial \theta} = 0$
 - Solve resulting (simultaneous) equations to get θ_{MLE}
 - Make sure that derived $\hat{\theta}_{MLE}$ is actually a maximum (and not a minimum or saddle point). E.g., check $LL(\theta_{MLE} \pm \varepsilon) < LL(\theta_{MLE})$
 - This step often ignored in expository derivations
 - So, we'll ignore it here too (and won't require it in this class)

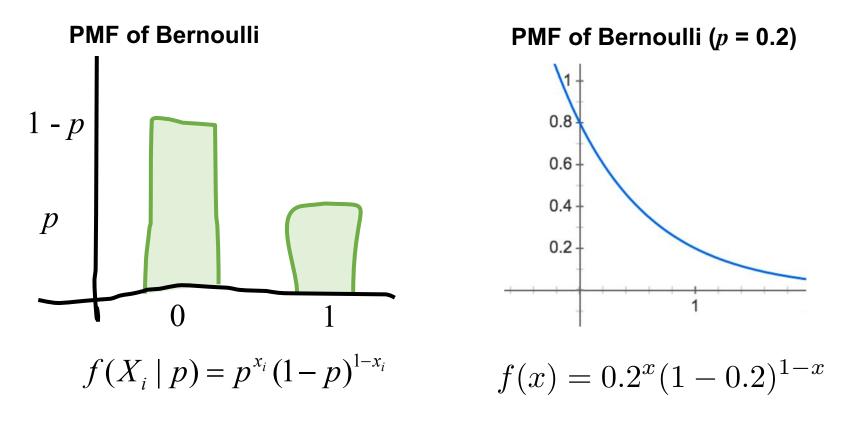
End Review

Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Ber(p)$
 - Probability mass function, $f(X_i | p)$:

Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Ber(p)$
 - Probability mass function, $f(X_i | p)$:



Bernoulli PMF

 $X \sim \operatorname{Ber}(p)$

$$f(X = x|p) = p^{x}(1-p)^{1-x}$$

Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Ber(p)$
 - Probability mass function, $f(X_i | p)$, can be written as: $f(X_i | p) = p^{x_i} (1-p)^{1-x_i}$ where $x_i = 0$ or 1
 - Likelihood: $L(\theta) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i}$
 - Log-likelihood:

$$LL(\theta) = \sum_{i=1}^{n} \log(p^{X_i}(1-p)^{1-X_i}) = \sum_{i=1}^{n} \left[X_i(\log p) + (1-X_i)\log(1-p) \right]$$

= $Y(\log p) + (n-Y)\log(1-p)$ where $Y = \sum_{i=1}^{n} X_i$

• Differentiate w.r.t. *p*, and set to 0:

$$\frac{\partial LL(p)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0 \quad \Rightarrow \quad p_{MLE} = \frac{Y}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Isn't that the same as the sample mean?

Yes. For Bernoulli.

Maximum Likelihood Algorithm

1. Decide on a model for the distribution of your samples. Define the PMF / PDF for your sample.

2. Write out the log likelihood function.

 State that the optimal parameters are the argmax of the log likelihood function.

4. Use an optimization algorithm to calculate argmax

Maximizing Likelihood with Poisson

- Consider I.I.D. random variables X₁, X₂, ..., X_n •
 - $X_i \sim \text{Poi}(\lambda)$ PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}$ Likelihood: $L(\theta) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$
 - Log-likelihood:

$$LL(\theta) = \sum_{i=1}^{n} \log(\frac{e^{-\lambda}\lambda^{X_i}}{X_i!}) = \sum_{i=1}^{n} \left[-\lambda \log(e) + X_i \log(\lambda) - \log(X_i!)\right]$$
$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!)$$

Differentiate w.r.t. λ , and set to 0:

$$\frac{\partial LL(\lambda)}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0 \quad \Rightarrow \quad \lambda_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

It is so general!

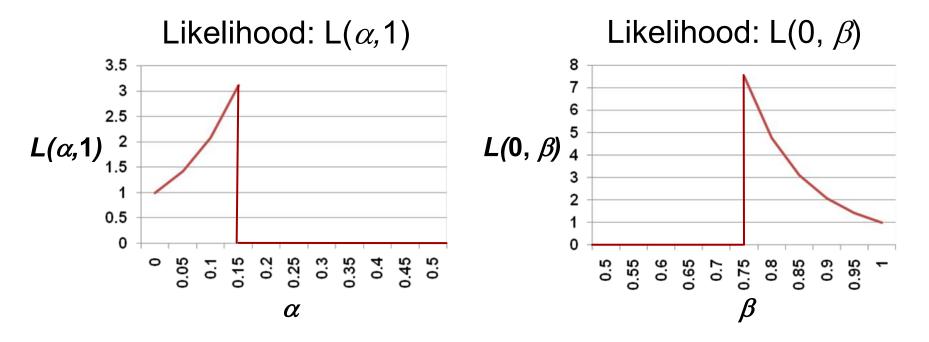
Maximizing Likelihood with Uniform

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim \text{Uni}(\alpha, \beta)$ • $\text{PDF}: f(X_i | \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x_i \le \beta \\ 0 & \text{otherwise} \end{cases}$ • Likelihood: $L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \alpha \le x_1, x_2, \dots, x_n \le \beta \\ 0 & \text{otherwise} \end{cases}$
 - ∘ Constraint $\alpha \le x_1$, x_2 , ..., $x_n \le \beta$ makes differentiation tricky
 - Intuition: want interval size $(\beta \alpha)$ to be as small as possible to maximize likelihood function for each data point
 - But need to make sure all observed data contained in interval
 - If all observed data not in interval, then $L(\theta) = 0$
 - Solution: $\alpha_{MLE} = \min(x_1, ..., x_n) \quad \beta_{MLE} = \max(x_1, ..., x_n)$

Understanding MLE with Uniform

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Uni(0, 1)$
 - Observe data:

 $_{\circ}$ 0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75



Small Samples = Problems

- How do small samples affect MLE?
 - In many cases, $\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$ = sample mean

Unbiased. Not too shabby...

• Estimating Normal, $\sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_{MLE})^2$

 $_{\circ}$ Biased. Underestimates for small *n* (e.g., 0 for n = 1)

• As seen with Uniform, $\alpha_{MLE} \ge \alpha$ and $\beta_{MLE} \le \beta$

 $_{\circ}$ Biased. Problematic for small *n* (e.g., α = β when n = 1)

- Small sample phenomena intuitively make sense:
 - $_{\circ}$ Maximum likelihood \Rightarrow best explain data we've seen
 - Does not attempt to generalize to unseen data

Properties of MLE

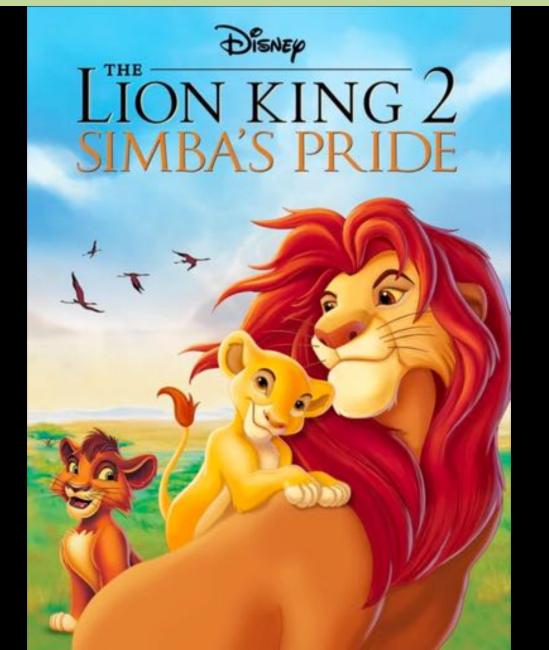
- Maximum Likelihood Estimators are generally:
 - Consistent: $\lim_{n \to \infty} P(|\hat{\theta} \theta| < \varepsilon) = 1$ for $\varepsilon > 0$
 - Potentially biased (though asymptotically less so)
 - Asymptotically optimal
 - Has smallest variance of "good" estimators for large samples
 - Often used in practice where sample size is large relative to parameter space
 - $_{\circ}\,$ But be careful, there are some very large parameter spaces

Maximum Likelihood Estimation $L(\theta) = \prod f(X_i \mid \theta)$ i=1n $LL(\theta) = \sum \log f(X_i|\theta)$ i=1 $\hat{\theta} = \operatorname{argmax} LL(\theta)$ θ

AND ADDRESS OF A DOREST OF A D

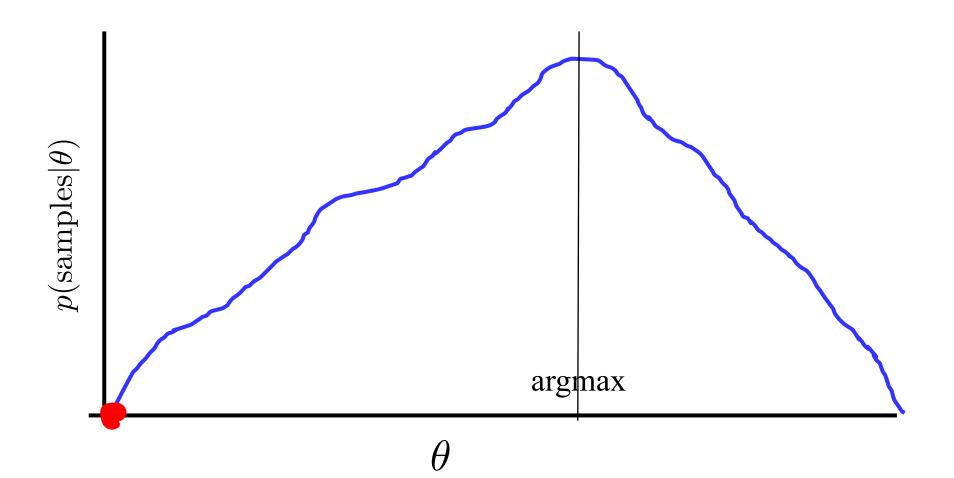
Piech, CS106A, Stanford University

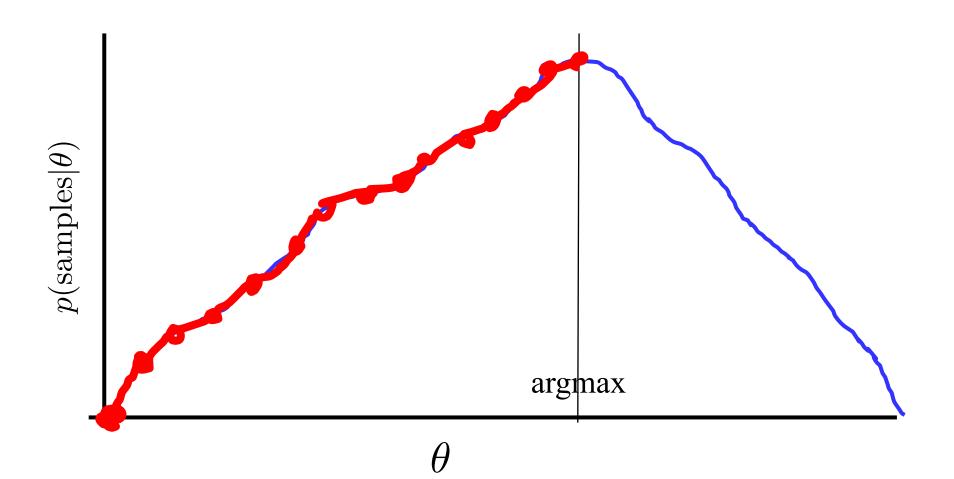
Argmax 2: Gradient Ascent

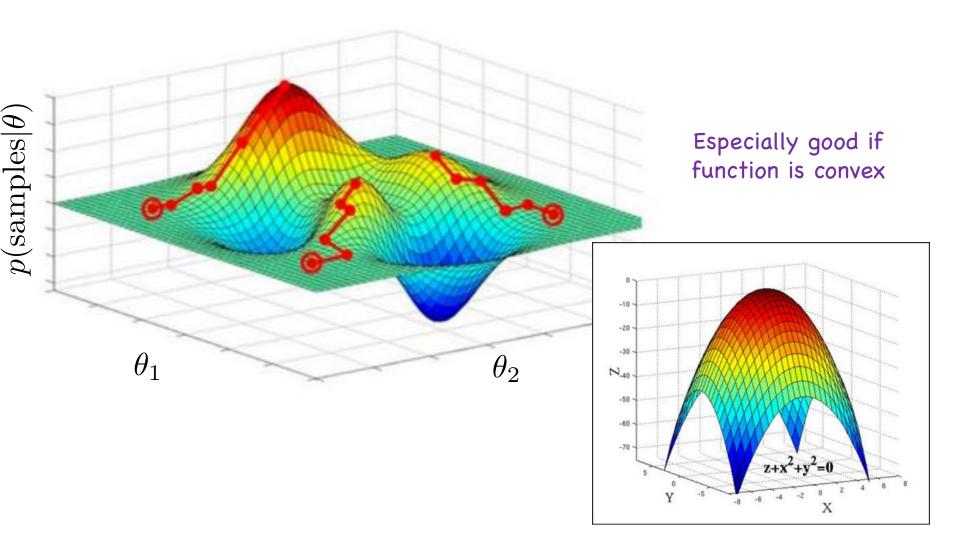


Argmax Option #1: Straight optimization

Argmax Option #2: Gradient Ascent







Repeat many times

$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \frac{\partial LL(\theta^{\text{old}})}{\partial \theta_j^{\text{old}}}$$

This is some profound life philosophy

Gradient ascent is your bread and butter algorithm for optimization (eg argmax)

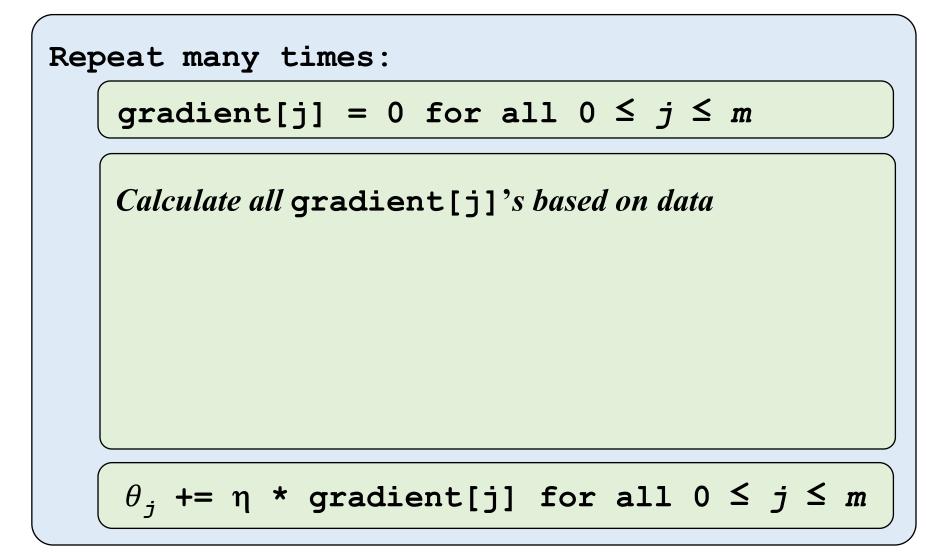
Piech, CS106A, Stanford University

Gradient Ascent

Initialize: $\theta_j = 0$ for all $0 \le j \le m$

Calculate all θ_i

Gradient Ascent



Review: Maximum Likelihood Algorithm

1. Decide on a model for the likelihood of your samples. This is often using a PMF or PDF.

2. Write out the log likelihood function.

 State that the optimal parameters are the argmax of the log likelihood function.

4. Use an optimization algorithm to calculate argmax

Review: Maximum Likelihood Algorithm

1. Decide on a model for the likelihood of your samples. This is often using a PMF or PDF.

2. Write out the log likelihood function.

 State that the optimal parameters are the argmax of the log likelihood function.

4. Calculate the derivative of LL with respect to theta

5. Use an optimization algorithm to calculate argmax

Linear Regression Lite

Predicting Warriors

 $X_1 = Opposing team ELO$

 $X_2 =$ Points in last game

 $X_3 = Curry playing?$

 $X_4 =$ Playing at home?

Y = Warriors points

Predicting CO₂ (simple)

 $X = CO_2$ level

Y = Average Global Temperature

N training datapoints $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$

Linear Regression Lite Model

 $Y = \theta \cdot X + Z$ $Z \sim N(0, \sigma^2)$ $Y | X \sim N(\theta X, \sigma^2)$

1) Write Likelihood Fn

 $\begin{array}{ll} \textbf{N training datapoints} & \textbf{Model} \\ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)}) & Y|X \sim N(\theta X, \sigma^2) \end{array}$

First, calculate Likelihood of the data

$$L(\theta) = \prod_{i=1}^{n} f(y^{(i)}, x^{(i)}|\theta)$$

Let's break up this joint

Shorthand for:

$$f(Y = y^{(i)}, X = x^{(i)}|\theta)$$

1) Write Likelihood Fn

 $\begin{array}{ll} \textbf{N training datapoints} & \textbf{Model} \\ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)}) & Y|X \sim N(\theta X, \sigma^2) \end{array}$

First, calculate Likelihood of the data

$$L(\theta) = \prod_{i=1}^{n} f(y^{(i)}, x^{(i)} | \theta)$$
 Let's break up this joint
$$= \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) f(x^{(i)})$$
 $f(x^{(i)})$ is independent of θ
$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \theta x^{(i)})^2}{2\sigma^2}} f(x^{(i)})$$
 Definition of $f(y^{(i)} | x^{(i)})$

2) Write Log Likelihood Fn

N training datapoints:

Likelihood function:

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$$
$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \theta x^{(i)})^2}{2\sigma^2}} f(x^{(i)})$$

Second, calculate Log Likelihood of the data

$$LL(\theta) = \log L(\theta)$$

= $\log \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \theta x^{(i)})^2}{2\sigma^2}} f(X^{(i)})$
= $\sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \theta x^{(i)})^2}{2\sigma^2}} + \sum_{i=1}^{n} \log f(X^{(i)})$
= $n \log \frac{1}{\sqrt{2\pi}} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2 + \sum_{i=1}^{n} \log f(x^{(i)})$

3) State MLE as Optimization

N training datapoints: $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$ Log Likelihood: $LL(\theta) = n \log \frac{1}{\sqrt{2\pi}} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2 + \sum_{i=1}^{n} \log f(x^{(i)})$

Third, celebrate!

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} - \sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2$$

 \mathbf{n}

4) Find derivative

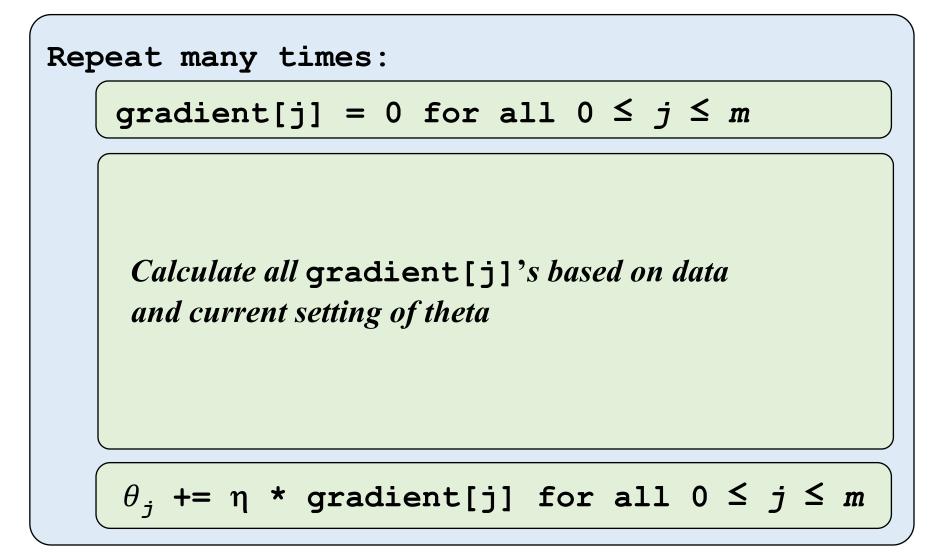
N training datapoints: $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$ Goal: $\hat{\theta} = \operatorname{argmax}_{\theta} - \sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2$ Fourth, optimize! $\frac{\partial LL(\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} - \sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2$

$$\begin{aligned} \frac{\partial H(\theta)}{\partial \theta} &= \frac{\partial}{\partial \theta} - \sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2 \\ &= -\sum_{i=1}^{n} \frac{\partial}{\partial \theta} (y^{(i)} - \theta X^{(i)})^2 \\ &= -\sum_{i=1}^{n} 2(y^{(i)} - \theta x^{(i)})(-x^{(i)}) \\ &= \sum_{i=1}^{n} 2(y^{(i)} - \theta x^{(i)})(x^{(i)}) \end{aligned}$$

5) Run optimization code

N training datapoints: $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})$ $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} - \sum_{i=1}^{n} (y^{(i)} - \theta x^{(i)})^2$ $\frac{\partial LL(\theta)}{\partial \theta} = \sum_{i=1}^{n} 2(y^{(i)} - \theta x^{(i)})(x^{(i)})$

Gradient Ascent



Linear Regression (simple)

```
Initialize: \theta = 0
```

```
Repeat many times:
    gradient = 0
    Calculate gradient based on data
    \theta += \eta * gradient
```

Linear Regression (simple)

```
Initialize: \theta = 0
```

```
Repeat many times:
```

gradient = 0

```
For each training example (x, y):
```

Update gradient for current training example

```
\theta += \eta * gradient
```

Linear Regression (simple)

```
Initialize: \theta = 0
```

```
Repeat many times:
gradient = 0
For each training example (x, y):
```

```
gradient += 2(y - \theta x)(x)
```

```
\theta += \eta * gradient
```

Linear Regression

Predicting CO₂

 $X_1 =$ Temperature

 $X_2 = Elevation$

 $X_3 = CO_2$ level yesterday

 $X_4 = GDP \text{ of region}$

 $X_5 =$ Acres of forest growth

 $Y = CO_2$ levels

Linear Regression

Problem: Predict real value Y based on observing variable X

Model: Linear weight every feature

$$\hat{Y} = \theta_1 X_1 + \dots + \theta_m X_m + \theta_{m+1}$$
$$= \theta^T \mathbf{X}$$

Training: Gradient ascent to chose the best thetas to describe your data

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} - \sum_{i=1}^{n} (Y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$$

Linear Regression

Initialize: $\theta_i = 0$ for all $0 \le j \le m$

```
Repeat many times:
    gradient[j] = 0 for all 0 \le j \le m
     For each training example (x, y):
          For each parameter j:
               gradient[j] += (y - \theta^T x)(-x[j])
    \theta_i += \eta * \text{gradient}[j] \text{ for all } 0 \leq j \leq m
```

Predicting Warriors

Y = Warriors points

$$\hat{Y} = \theta_1 X_1 + \dots + \theta_m X_m + \theta_{m+1}$$
$$= \theta^T \mathbf{X}$$

 $X_1 = Opposing team ELO$

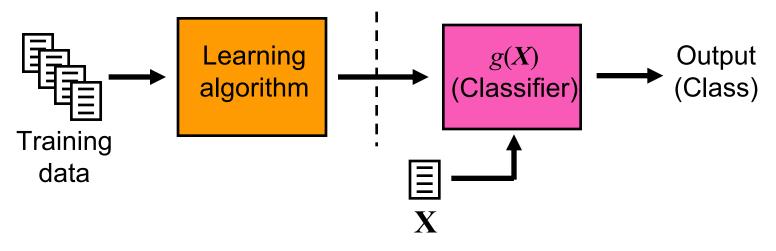
 $X_2 =$ Points in last game

 $X_3 = Curry playing?$

 $X_4 =$ Playing at home?

 $\theta_1 = -2.3$ $\theta_2 = +1.2$ $\theta_3 = +10.2$ $\theta_4 = +3.3$ $\theta_{5} = +95.4$

The Machine Learning Process



Training data: set of N pre-classified data instances

• *N* training pairs: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$

• Use superscripts to denote *i*-th training instance

- Learning algorithm: method for determining g(X)
 - Given a new input observation of $x = x_1, x_2, ..., x_m$
 - Use g(x) to compute a corresponding output (prediction)