
Gradient Ascent
Chris Piech

CS109, Stanford University

Our Path

Parameter Estimation

Linea
r

Regr
essio

n Naïve
Baye

s Logis
tic

Regr
essio

n

Deep Learning

Our Path

Linea
r

Regr
essio

n Naïve
Baye

s Logis
tic

Regr
essio

n

Deep Learning

Unbias
ed

estim
ators Maxim

izing

likeli
hood Baye

sian

estim
ation

Review

• Consider n I.I.D. random variables X1, X2, ..., Xn

§ Xi is a sample from density function f(Xi | q)

§ What are the best choice of parameters q ?

Parameter Learning

Piech, CS106A, Stanford University

Likelihood (of data given
parameters):

Õ
=

=
n

i
iXfL

1

)|()(qq

Piech, CS106A, Stanford University

Maximum Likelihood
Estimation

Õ
=

=
n

i
iXfL

1

)|()(qq

LL(✓) =
nX

i=1

log f(Xi|✓)

✓̂ = argmax
✓

LL(✓)

Argmax?

Option #1: Straight optimization

• General approach for finding MLE of q
§ Determine formula for LL(q)

§ Differentiate LL(q) w.r.t. (each) q :

§ To maximize, set

§ Solve resulting (simultaneous) equations to get qMLE
o Make sure that derived is actually a maximum (and not a

minimum or saddle point). E.g., check LL(qMLE ± e) < LL(qMLE)
• This step often ignored in expository derivations
• So, we’ll ignore it here too (and won’t require it in this class)

q
q

¶
¶)(LL

0)(
=

¶
¶

q
qLL

MLEq̂

Computing the MLE

Piech, CS106A, Stanford University

End Review

Maximizing Likelihood with Bernoulli

• Consider I.I.D. random variables X1, X2, ..., Xn
§ Xi ~ Ber(p)
§ Probability mass function, f(Xi | p):

• Consider I.I.D. random variables X1, X2, ..., Xn
§ Xi ~ Ber(p)
§ Probability mass function, f(Xi | p):

Maximizing Likelihood with Bernoulli

0 1

p

1 - p

PMF of Bernoulli

1 0)1()|(1 or where =-= -
i

xx
i xpppXf ii

PMF of Bernoulli (p = 0.2)

f(x) = 0.2x(1� 0.2)1�x

Bernoulli PMF

f(X = x|p) = px(1� p)1�x

X ⇠ Ber(p)

• Consider I.I.D. random variables X1, X2, ..., Xn

§ Xi ~ Ber(p)

§ Probability mass function, f(Xi | p), can be written as:

§ Likelihood:

§ Log-likelihood:

§ Differentiate w.r.t. p, and set to 0:

1 0)1()|(1 or where =-= -
i

xx
i xpppXf ii

Õ
=

--=
n

i

XX ii ppL
1

1)1()(q

[]åå
==

- --+=-=
n

i
ii

n

i

XX pXpXppLL ii

11

1)1log()1()(log))1(log()(q

å =
=--+=

n

i iXYpYnpY
1

 where)1log()()(log

å
=

==Þ=
-
-

-+=
¶

¶ n

i
iMLE X

nn
Yp

p
Yn

p
Y

p
pLL

1

1 0
1

1)(1)(

Maximizing Likelihood with Bernoulli

Isn’t that the same as
the sample mean?

Yes. For Bernoulli.

Maximum Likelihood Algorithm

4. Use an optimization algorithm to calculate argmax

1. Decide on a model for the distribution of
your samples. Define the PMF / PDF for
your sample.

2. Write out the log likelihood function.

3. State that the optimal
parameters are the argmax of
the log likelihood function.

• Consider I.I.D. random variables X1, X2, ..., Xn
§ Xi ~ Poi(l)

§ PMF: Likelihood:

§ Log-likelihood:

§ Differentiate w.r.t. l, and set to 0:

!
)|(

i

x

i x
e

Xf
ill

l-

= Õ
=

-

=
n

i i

X

X
eL

i

1 !
)(lq

l

[]åå
==

-

-+-==
n

i
ii

n

i i

X

XXe
X
eLL

i

11

)!log()log()log()
!

log()(lllq
l

åå
==

=Þ=+-=
¶

¶ n

i
iMLE

n

i
i X

n
XnLL

11

1 01)(l
ll

l

åå
==

-+-=
n

i
i

n

i
i XXn

11

)!log()log(ll

Maximizing Likelihood with Poisson

It is so general!

• Consider I.I.D. random variables X1, X2, ..., Xn

§ Xi ~ Uni(a, b)

§ PDF:

§ Likelihood:

o Constraint a ≤ x1, x2, …, xn ≤ b makes differentiation tricky

o Intuition: want interval size (b – a) to be as small as possible to
maximize likelihood function for each data point

o But need to make sure all observed data contained in interval
• If all observed data not in interval, then L(q) = 0

§ Solution: aMLE = min(x1, …, xn) bMLE = max(x1, …, xn)

ïî

ï
í
ì

££= ÷
÷
ø

ö
ç
ç
è

æ

-

 otherwise 0

 ,...,,)(21
1 baq ab n

n

xxxL

ïî

ï
í
ì ££= -

otherwise0

),|(
1

baba ab i
i

xXf

Maximizing Likelihood with Uniform

• Consider I.I.D. random variables X1, X2, ..., Xn
§ Xi ~ Uni(0, 1)

§ Observe data:
o 0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75

Likelihood: L(a,1)

a

L(a,1)

Likelihood: L(0, b)

b

L(0, b)

Understanding MLE with Uniform

• How do small samples affect MLE?

§ In many cases, = sample mean

o Unbiased. Not too shabby…

§ Estimating Normal,

o Biased. Underestimates for small n (e.g., 0 for n = 1)

§ As seen with Uniform, aMLE ≥ a and bMLE ≤ b
o Biased. Problematic for small n (e.g., a = b when n = 1)

§ Small sample phenomena intuitively make sense:
o Maximum likelihood Þ best explain data we’ve seen

o Does not attempt to generalize to unseen data

å
=

=
n

i
iMLE X

n 1

1µ

å
=

-=
n

i
MLEiXnMLE

1

22)(1 µs

Small Samples = Problems

• Maximum Likelihood Estimators are generally:

§ Consistent: for e > 0

§ Potentially biased (though asymptotically less so)

§ Asymptotically optimal
o Has smallest variance of “good” estimators for large samples

§ Often used in practice where sample size is large
relative to parameter space

o But be careful, there are some very large parameter spaces

1) |ˆ(|lim =<-
¥®

eqqP
n

Properties of MLE

Piech, CS106A, Stanford University

Maximum Likelihood
Estimation

Õ
=

=
n

i
iXfL

1

)|()(qq

LL(✓) =
nX

i=1

log f(Xi|✓)

✓̂ = argmax
✓

LL(✓)

Argmax 2: Gradient Ascent

Argmax
Option #1: Straight optimization

Argmax
Option #2: Gradient Ascent

Gradient Ascent

Walk uphill and you will find a local maxima
(if your step size is small enough)

✓

p(
sa
m
p
le
s|✓

)

argmax

Gradient Ascent

Walk uphill and you will find a local maxima
(if your step size is small enough)

✓

p(
sa
m
p
le
s|✓

)

argmax

Gradient Ascent

Walk uphill and you will find a local maxima
(if your step size is small enough)

Especially good if
function is convex

p(
sa
m
p
le
s|✓

)

✓1 ✓2

✓ new
j = ✓ old

j + ⌘ · @LL(✓
old)

@✓ old
j

Gradient Ascent

Repeat many times

Walk uphill and you will find a local maxima
(if your step size is small enough)

This is some profound life philosophy

Piech, CS106A, Stanford University

Gradient ascent is your
bread and butter
algorithm for optimization
(eg argmax)

Initialize: θj = 0 for all 0 ≤ j ≤ m

Gradient Ascent

Calculate all θj

Initialize: θj = 0 for all 0 ≤ j ≤ m

Gradient Ascent

Repeat many times:

Calculate all gradient[j]’s based on data

!j += h * gradient[j] for all 0 ≤ j ≤ m

gradient[j] = 0 for all 0 ≤ j ≤ m

Review: Maximum Likelihood Algorithm

4. Use an optimization algorithm to calculate argmax

1. Decide on a model for the likelihood of
your samples. This is often using a PMF
or PDF.

2. Write out the log likelihood function.

3. State that the optimal
parameters are the argmax of
the log likelihood function.

Review: Maximum Likelihood Algorithm

4. Calculate the derivative of LL with respect to theta

1. Decide on a model for the likelihood of
your samples. This is often using a PMF
or PDF.

2. Write out the log likelihood function.

3. State that the optimal
parameters are the argmax of
the log likelihood function.

5. Use an optimization algorithm to calculate argmax

Linear Regression Lite

Predicting Warriors

X1 = Opposing team ELO

X2 = Points in last game

X3 = Curry playing?

X4 = Playing at home?

Y = Warriors points

Predicting CO2 (simple)

(x(1), y(1)), (x(2), y(2)), . . . (x(n), y(n))

N training datapoints

Linear Regression Lite Model

Y = ✓ ·X + Z Y |X ⇠ N(✓X,�2)Z ⇠ N(0,�2)

X = CO2 level

Y = Average Global Temperature

1) Write Likelihood Fn

(x(1), y(1)), (x(2), y(2)), . . . (x(n), y(n))

N training datapoints Model
Y |X ⇠ N(✓X,�2)

First, calculate Likelihood of the data

Shorthand for:

1) Write Likelihood Fn

(x(1), y(1)), (x(2), y(2)), . . . (x(n), y(n))

N training datapoints Model
Y |X ⇠ N(✓X,�2)

First, calculate Likelihood of the data

2) Write Log Likelihood Fn

Second, calculate Log Likelihood of the data

Likelihood function:

(x(1), y(1)), (x(2), y(2)), . . . (x(n), y(n))N training datapoints:

3) State MLE as Optimization

Third, celebrate!

Log Likelihood:

(x(1), y(1)), (x(2), y(2)), . . . (x(n), y(n))N training datapoints:

4) Find derivative

Fourth, optimize!

Goal:
(x(1), y(1)), (x(2), y(2)), . . . (x(n), y(n))N training datapoints:

5) Run optimization code

(x(1), y(1)), (x(2), y(2)), . . . (x(n), y(n))N training datapoints:

Initialize: θj = 0 for all 0 ≤ j ≤ m

Gradient Ascent

Repeat many times:

Calculate all gradient[j]’s based on data
and current setting of theta

!j += h * gradient[j] for all 0 ≤ j ≤ m

gradient[j] = 0 for all 0 ≤ j ≤ m

Initialize: θ = 0

Gradient Ascent

Repeat many times:

Calculate gradient based on data

! += h * gradient

gradient = 0

Linear Regression (simple)

Initialize: θ = 0

Repeat many times:

For each training example (x, y):

! += h * gradient

gradient = 0

Update gradient for current training example

Linear Regression (simple)

Initialize: θ = 0

Repeat many times:

For each training example (x, y):

! += h * gradient

gradient = 0

gradient += 2(y - θ x)(x)

Linear Regression (simple)

Linear Regression

Predicting CO2

X1 = Temperature

X2 = Elevation

X3 = CO2 level yesterday

X4 = GDP of region

X5 = Acres of forest growth

Y = CO2 levels

Training: Gradient ascent to chose the best thetas to describe
your data

✓̂MLE = argmax
✓

�
nX

i=1

(Y (i) � ✓Tx(i))2

Problem: Predict real value Y based on observing variable X

Linear Regression

Model: Linear weight every feature

Ŷ = ✓1X1 + · · ·+ ✓mXm + ✓m+1

= ✓TX

Initialize: θj = 0 for all 0 ≤ j ≤ m

Repeat many times:

For each training example (x, y):

For each parameter j:

!j += h * gradient[j] for all 0 ≤ j ≤ m

gradient[j] = 0 for all 0 ≤ j ≤ m

gradient[j] += (y – θTx)(-x[j])

Linear Regression

Predicting Warriors
Y = Warriors points

X1 = Opposing team ELO

X2 = Points in last game

X3 = Curry playing?

X4 = Playing at home?

!1 = -2.3

!2 = +1.2

!3 = +10.2

!4 = +3.3

!5 = +95.4

Ŷ = ✓1X1 + · · ·+ ✓mXm + ✓m+1

= ✓TX

§ Training data: set of N pre-classified data instances
o N training pairs: (x(1),y(1)), (x(2),y(2)), …, (x(n), y(n))

• Use superscripts to denote i-th training instance
§ Learning algorithm: method for determining g(X)

o Given a new input observation of x = x1, x2, …, xm
o Use g(x) to compute a corresponding output (prediction)

Output
(Class)

Training
data

Learning
algorithm

g(X)
(Classifier)

X

The Machine Learning Process

